uyhjjddddddddddd Web Optimisation, Maths and Puzzles: space

Header tag

Showing posts with label space. Show all posts
Showing posts with label space. Show all posts

Thursday, 21 March 2013

Film Review: Wing Commander

I only played Wing Commander on a PC once; maybe twice.  I didn't own the game, and played it on a friend's PC. First-person space shooters have never ever appealed to me, since I never understood the three-dimensional radar readouts, and if I should press Up or Down to catch the enemy.  As a result, I never got into the original game, or any of the subsequent Wing Commander series.

However, Wing Commander was widely recognised as a very good example of its genre, and had a working plot and back story, based around mankind's war against the feline-looking Kilrathi.  So, it was only a matter of time before a Wing Commander film was made.  I'm still waiting for a Command and Conquer film crossover, and I acknowledge my optimism on that score!


Coming from a generation where movies were made into computer games, I was interested to see how a computer game could be made into a movie. The DVD blurb describes the film as Starship Troopers meets Top Gun, and the film is a blend of sci-fi, testosterone and a large fistful of cliches.  And you'd better pay attention during the opening credits, as the voice-overs are going to give you all the back-story in case you've only played the Wing Commander game a few times.

The plot:  Earth's distant Vega outpost is attacked by the Kilrathi, and they break into the outpost and steal a Navcom AI unit.  This will enable them to carry out a series of hyperspace jumps to Earth.  I'm sure there's more to it than that, but that's the gist of it.  As far as back-stories go, Wing Commander has one, which was becoming the de facto standard for 90s computer games.


A security 'breech', and more serious than the breach of spelling.  Note Nokia's product placement - this IS the 1990s, after all.

Earth's battle fleet are too far away to prevent the impending attack on Earth, so it falls to one surviving battleship to save the day. The message is passed from Earth central command to the one surviving battleship in the area, the Tiger Claw, by a young hot shot pilot, Lieutenant Christopher Blair.  They relay the message, and one battleship is set to face-off against a vast and overwhelming Kilrathi army.  Who will win?  Is Earth safe?

Of course, Blain's father served with many of the Tiger Claw's senior staff (very Top Gun).  He's on board a carrier ship which is taking him out to active duty, and which is piloted by a crusty old captain who is secretly an expert in space combat, and is one of the "Pilgrims", a sort of human under-class with special space-faring abilities.  Are you counting the cliches yet?  And does Blair have some previously undiscovered special space-faring abilities as well?

To quote a conversation on the Tiger Claw:
"Lieutenant, you wouldn't be related to Arnold Blair, would you?"
"He was my father, sir."
"He married a Pilgrim woman, didn't he?"

"Pilgrims don't think like us."
"You won't have to worry sir, they're both dead."

So let's add 'orphan' to the list of cliches.  And while this scene is playing out, remember to have a go at "What have they been in since (or before)?" - there's David "Poirot" Suchet, and David Warner (Tron, Star Trek VI), and Hugh Quarshie (Holby City) just for starters.


Fortunately, Wing Commander does have a few novelties: the senior flying officer (played with a genuine British accent by Saffron Burrows) is female, and a slightly better-developed character; a few of the other fighter pilots are female too, so the film just manages to dodge much of the testosterone-laden dialogue that completely overwhelmed Top Gun.  This film is a PG, so it's all toned down.  The worst example here:  Blair, to the senior flying officer Lieutenant Commander Deveraux (I mean Wing Commander, of course I do),  "If I'm locked on, there's no such thing as evasive action," delivered with a smile that's wider than the Andromeda galaxy.  She puts him in his place with some witticisms, thankfully.  This forms the basis of the usual mistaken identity moment where "It turns out that the mechanic is actually the commanding officer," and you know as soon as Blair has demonstrated his immaturity and lack of flying experience to Deveraux that they'll be kissing before the final credits.  Predictable?  Absolutely.  

Wing Commander features the pilot hot shot rivalry that is par for the course with any military action film, but thankfully it only occurs in a couple of scenes, as Blair and his colleague have to find their places in the pecking order on the Tiger Claw.  A few cross words and a bit of fist waving, and it's all done and dusted.  That's a relief.


There is also the death of a colleague, which was a little surprising for a computer game crossover, but standard issue in Top Gun etc.  I should have seen it coming, I know.  The death of one of the characters requires more depth in the characters who should adjust to it, but the script and the story just don't have the extra dimension that's needed.  Subsequently, Matthew Lillard's character Todd Marshall comes off looking underwritten (or under-acted - I'll be honest, I can't decide).  The colleague's death is his fault, but by the end of the film he still looks as hot-headed and stupid as he did at the start.

Otherwise, it's a by-the-numbers shoot-em-up...  there are a few variations on the theme:  in Top Gun, it's "If you can't find somebody to fly on your wing, I will," whereas in Wing Commander, it goes like this:

Deveraus: "Let's make them bleed.  Mount up.  Blair, you'll take Hunter's wing."
Hunter: "Ma'am, I'd as soon you assign me another wingman."
Deveraux:  "You have a problem I should be aware of?"
Hunter: "Yes, ma'am, I do. I don't fly with Pilgrims."
Deveraux (to Blair): "You'll fly my wing."
Blair: "Are you sure?"
Deveraux:  "Did I give a suggestion or an order?"
Blair: "I got your wing, ma'am."

The space setting is used to good effect, with a nebula and a black hole (named Scylla and Charybdis) and massive 'distortions in space-time' (i.e. a very massive star) providing some mild jeopardy at the start of the film, and a way to defeat the Kilrathi battleship towards the end.  Although how the Kilrathi failed to see the very bright star just in front of them until it was too late is a mystery to me.  There's a good battle scene in an asteroid field, where the debate that Blair and Deveraux about fighting the enemy is enacted in real life.  Foreshadowing?  Predictability?  Not sure.


For me, the one major disappointment is the Kilrathi.  I know it's a strange disappointment, but I've always read, seen and understood from Wing Commander reviews, magazine articles and conversations that they were feline (or felinoid, to quote the Wing Commander wiki).  However, here, the costuming is way off, and they look like they're reptilian... or at best, bald cats.  They have no fur or hair; their faces look too unrealistic to be believable and they come off looking unintelligent.  They only get a few lines of dialogue too, spoken in Kilrathi and subtitled, so the end result is that they look like men in costumes that are so poorly designed that the actors inside them can't be heard properly.  And these are the villains of this piece:  some characterisation other than "bent on total intergalactic domination" would have been good.

So:  if you've played the game and understand the backstory, Wing Commander might be a good film to watch for the nostalgia value.  If you don't mind story-telling cliches and you enjoyed Top Gun, you'll like this (and it's rated PG too).  It's quite clear that the Wing Commander team were going for Top Gun in space, and they play up any possible connections or similarities.  Alternatively, if you're a little more selective about your sci-fi, and you've not yet seen any of the recent Battlestar Galactica TV series, I'd recommend them instead.

Sunday, 27 February 2011

Physics discussion: Escape Velocity

The story goes that Isaac Newton was sitting under an apple tree, when an apple fell on his head, and prompted him to wonder why it fell downwards, and not upwards or even sideways.  However, what history doesn’t tell us is that he probably got quite upset at having his afternoon nap interrupted by an apple, and, in his annoyance, threw the apple away as far as he could, declaring, “Stupid apples!”  He then wondered why the apple fell back to the earth, despite him throwing it away as hard as he could.

The same applies today (gravity hasn't changed much since then).  Consider throwing a tennis ball:  the harder you throw it, the higher it goes.  How about throwing it upwards, or even aiming for the moon (it’s not a million miles away, you know)? How fast does it have to be travelling, or how quickly do I have to throw it, so that it doesn’t come back down again?  We call this initial speed (how fast you have to throw it) the escape velocity.

Thinking in scientific terms, we can say that the apple (or the tennis ball) has escaped from the Earth’s gravitational pull, and will not fall back down to the earth.  It has maximum gravitational potential energy, and no kinetic energy (i.e. it stopped moving).  This happens at the edge of the gravitational field.

Since the kinetic energy at the start (i.e. from the throw) has all been converted into potential energy, we can say that the two are equal.

The potential energy is:

And the kinetic energy is:
where m2 is the mass of the object being thrown, and m1 is the mass of the Earth. 

 I’ll explain a bit more here about how this works, because at school I was taught that gravitational potential energy = mgh¸ where m is mass, g is acceleration due to gravity, and h is height – so that potential energy continues to increase with height.  So, when does PE = mgh stop being correct?  PE = mgh is not true when h becomes large, and g becomes very small.  The value of g changes with height; close to surface of the earth, mgh is an acceptable approximation, however at high altitude, g becomes
very much smaller.  It’s different at the top of a mountain than it is at sea level for instance.
So, the definition of potential energy is something else, it’s not mgh, it’s taken as something else.PE for all locations is equal to the formula given above.

Since we can equate these two energies, we have that:

Solving for this revised equation gives an expression for escape velocity, v, as:



Where m2 is the mass of the Earth (in this case) and r is the Earth’s radius from centre to surface (i.e. from the centre of gravity to the point we’re launching from), since we have a bit of a head-start on gravity (we don't have to launch from the centre of the Earth).

Solving for all the numbers gives us an escape velocity of 11,181 metres per second, which is 34 times the speed of sound (Mach 34).  If you tried to throw an object at this speed, you'd probably either break your arm, or suffer friction burns from the air resistance as the air particles tried to move out of the way of your arm (and failed).  
It's also worth mentioning that I've not looked at air resistance, which at Mach 34 is considerable.  The sonic boom caused by the apple (or the tennis ball) would be extremely loud... in fact, I imagine the apple would turn into apple sauce, and the tennis ball would melt into a sticky, furry goo before it got anywhere near earth orbit.

I should explain at this point that escape velocity isn’t the speed that space rockets travel at when they take off.  This is really important.

An important point about escape velocity

Remember at the start that we were talking about throwing objects – where all the energy, and force is transferred to the object at the start of its flight.  With space rockets, the engines keep pushing the space rocket while it’s in flight, so they don’t have to travel as quickly, they just have to push upwards with a force that constantly exceeds their weight until they achieve an earth orbit.  This means that space shuttles, and space rockets, don't have to reach escape velocity.  Instead, they just have to keep pushing upwards with a force that is greater than their weight, until they reach an orbital height.