
Credit to Denis from the freemathhelp forum for his work on this, providing the vast majority of the results and taking the problem way beyond its original scope. Major credit also to Skipjack for providing the solutions marked with an asterisk.
To clarify, r(.1) = repeating decimal.
151: (4! + 3!) / .2 + 1
152: (1 + 4)! + 32
153: 34 / 2 / r(.1)
154: 2^4 / .1 - 3!
155: 31 * 2 / .4
156:4! * 3! + 12
157: 314 / 2
158: 3!! * .2 + 14
159: 3!! / 4 - 21
160: 32 * (1 + 4)
161: 3^4 * 2 - 1
162: 3^4 * 2 * 1
163: 3^4 * 2 + 1
164: (3! - 2) * 41
165: 4! + 3! + 21
*166: 4! * (3! + 1) - 2
167: 13^2 - SQRT(4)
168: 14 * 3! * 2
169: 13^(4 - 2)
170: 34 / .2 * 1
171: 13^2 + SQRT(4)
172 = .1^(-2) + 3 * 4!
173: 13^2 + 4
*174: 3! * (4! + 1 / .2)
175: 3!! / 4 - 1 / .2
*176: 4! / .1 - 2^3!
177: 3!! / 4 - 1 - 2
178: 3!! / 4 - 1 * 2
179: 3!! / 4 + 1 - 2
180: 3!! / 4 * (2 - 1)
181: 3!! / 4 - 1 + 2
182: 3!! / 4 + 1 * 2
183: 3!! / 4 + 1 + 2
184: 3!! * .2 + 4 / .1
185: 3!! * .2 + 41
186: (2 + 4) * 31
*187: (4! - 3) / r(.1) - 2
188 = (.1^(-2) - 3!) * SQRT(4)
189: 213 - 4!
190: 14^2 - 3!
191: 4! * 2^3 - 1
192: 3!! / 4 + 12
193: 14^2 - 3
194: 4 / .1 / .2 - 3!
195 = (4! - 2) / r(.1) - 3
*196: 4 * (3! + 1)^2
197: 4 / .1 / .2 - 3
198 = (3! * 4 - 2) / r(.1)
199: 14^2 + 3
200: (2 + 3) * 4 / .1
No comments:
Post a Comment